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Preface

Let G be a topological transformation group on a
compact Hausdorff space Y and F(G;Y) its fixed point
set. The present paper is devoted to the study of the
cohomology structure of F(G;Y) in the following three
cases:

(1) G is the group 2; of integers modulo 2

and Y has the mod 2 cohomology ring of the
real projective n-space.

(2) G is the group Zp of integers modulo p, where
p 1s an odd prime number, and Y has the mod
p cohomology structure of the lense
(2n+1) -space mod p.

(3) G is the circle group S' and Y has the
1ntegrii"cohonology ring of the complex
projective n-space.

For simplicity, we shall call Y a cohomology real
projective n-space or a cohomology lense (2n+l)-space
wod p or a cohomology complex projective n-space if its
cohomology structure is that described in (1) or (2)

or (3). (Formal definitions of these notions will be
given later.)

Our study of the problem proposed above is
motivated by two recent theorems obtained separably

by P.A. Smith and C.T. Yang. In (16), Smith proved
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that if 27 acts effectively on the real projective
n-space, then the fixed point set is either empty, or
it has exactly two components c; and c,, where each

¢y is a cohomology real projective ny-space, i = 1,2,
and n] + np = n-1. Later in an unpublished work,

Yang proved that if S' acts differentisbly on the
complex projective n-space, then the fixed point set is
non-empty, and has at most n+tl components, 8ay Cj,e..,
ck» k € ntl, where every c; is a cohomology complex
projective nj-space, 1 = 1,2,..., k, and n; + n3 + ..,
+n, = n-k+l. Thus roughly speaking, their theorems
start from the actual projective space, a real one in
Smith's case and a complex one in Yang's case, and end
up with asserting that the fixed point set is an union
of a finite number of cohowology projective spaces.
Naturally, as suggested by Smith, one would inquire
what is the situation when; in their hypothesis, the
actual projective spaces are replaced by the weaker
notion of cohomology projective spaces. This is
precisely the cases (1) and (3). Our main purpose i{s to
show that, under the more general setting of (1) and (3),
essentially the same conclusions obtained by Swmith

and Yang still hold true. We also include a study of
case (2), which is the natural counterpart of case (1)
when p is odd.
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The key point for the proofs of Smith's and
Yang's theorems is to make use of the close relation
between the projective spaces and the spheres. There
exists a free action of Z, on the n-sphere S™ with the
real projective n-space RP® as the orbit space.
Similarly, there exists a canonical free action of
S' on the (2n+l)-sphere g2n*l with the complex
projective n-space CP" as the orbit space., Thus
RP" can be viewed as the base space in a principal
bundle (S®,RPM, Z,, fr ) and CP" as the base space in
a principal bundle (s2"*1, CcP", s', 77 ), vhere in each
case 7 denotes the projection from the total space to
the base space. Now if RP® is acted on by a group Z2,
it is possible to lift this action to S® in the sense
that an action of Z, on S" can be defined so that the
projection T+ : S® __, RP® becomes equivariant. This
is so because S" is the space of all paths of RPM;
hence any map of RPM into itself induces a map of the
space of all paths into itself in a natural fashiom.
Similarly, if S' acts on CP® differentiably, a lifting
can also be constructed through analytic means. In
both cases, the idea is to shift the given action to
an action on spheres. Once this is done, the theorems
can be proved via a theorem of A, Borel (1). It is
then clear from what has been said that our problem can

be solved along the same line of thought if we can do
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the following: First, to exhibit that cohomology
projective spaces are covered by cohomology spheres

as in the actual case; second, to show that this relation
permits one to lift an action (of a suitable group)

on the former to an action on the latter.

Our paper is divided into two parts, In Part 1, we
treat the cases (1) and (2) where the acting group is a
finite cyclic group of prime order. In part 2, we
treat the case (3) where the acting group is the circle
group. The schemes of development of these two parts
are entirely parallel to each other and the division is
made chiefly because of some technical differences between
handling a finite and an infinite group. Each part
begins with a preliminary section in which known results
needed later and the likes are collected. In Section
2 ve first prove that if Zp acts freely on a cohomology
sphere mod p, then the orbit space is a cohomology
real projective space or a cohomology lense space
mod p according to whether p is even or odd. This
is, of course, more or less well-known. Much more
interesting is the fact that the converse is also true;

that is, 1f Z_ acts freely on a connected compact

P
Hausdorff space X such that the orbit space x/zp is a

cohomology real projective space or a cohomology lense
space mod p, then X itself must be a cohomology sphere

mod p. Similar results for the circle group are obtained
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in Section 6. These may be termed as the uniqueness
theorems which assert that cohomology spheres are
essentially the only sp;cos on which Zp or S' can
act freely to give a cohomology projective space as
the orbit space. The existence problem (i.e. to see
if every cohomology projective space can actually be
obtained as the orbit space of a suitable transformation

group on a cohomology sphere.) 1is studied in Section

3 and Section 7. In Section 3, we start from a connected

compact Hausdorff space Y and then describe how, for
each non-zero element oeH'(Y;Zp), a principal bundle
(X,¥,2p, r ) can be constructed for which 7y *:

H' (Y;2p) — H' (X;Zp) takes e into zero. Owing to
this last property, we call X a cohomology covering
space of Y with respect to @& . In fact, it is
constructed the same way as the classical covering
space. This construction also takes care of the lifting
problem automatically. Similarly, in Section 7, we
assume that Y is just compact Hausdorff and prove,

for each element a, of the integral cohomology group
HZ(Y), zero or not, the existence of a principal bundle
(X,Y,S',t) such that 7r*: H2(Y) — H2(X) takes a,
into zero. Unlike the previous case, this bundle is
now obtained indirectly with the aid of the obstruction

theory. Simple as this procedure is, the lack of an
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explicit construction makes the lifting problem quite
difficult. Fortunately this difficulty can be overcome
by a recent result of T,.E. Stewart (19) concerning
problems of this nature. Section 4 and Section 8 contain
the proofs of the main theorems of this paper.

The author of this paper expresses his gratitude
to Professor C.T. Yang, under whose supervision this
paper is written. The author also acknowledges with
pleasure his appreciation of the many inspiring
communications made to him by Mr., W.C. Hsiang and
Mr. S.S. Koh.
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PLRT 1
Seotion 1, Prelimninaries of Part 1

In this section we colleoct some algebraic and topolog=
lcal facts that will be used later, Most of them are
welleknown. Henoce proofs will be omitted, although ref-
erences will be given in each case.

le 1¢ Let G be any finite group and A an Abelian group
on which G operates as a group o; automorphismse Then the
functor H*(G; A) = §§0.39(G;A), called the cohomology of
G with coefficients in A, cen be defined. We shull be ocone
oerned only with the ocase when G is the grouplzp of ine
tegers modulo a prime number pe In this case, the groups
i ot (Zp :4) can be caloulated expliocitly as

R if 5 = 0;

B® (Zpih) @ &¥/74  ifsm2, n O

‘ 54/Ti ifsa2n 1, n 0,
where T 1s a generat?:r of Zp, "C «l-T, = :5_"“_0 '1'1’
A" «KorT and @4 e Kerw. If, in particuler, 4 = Zp,
then Zp can operate only trivially on it and the above
formula will give Ha(Zp; Zp) = 2y, for all 830, More-
over, there exists a product on H*(Zp;Zp) which akes it
a rings This ring can be described as follows: If p = 2,

we have

®
H (Z2; Zp) a ZZEKIQ ’
where Zz[il is the polynomial ring with coefficients in
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28, The grading of H*(Zz; Z5) 1is obtcined by ass;gning
¢ as the degree of x (ubbreviated deg x). If p# 2, the
slituation is & little more complicateds In this case we
have

2 (2 2) = Al 2 T,
where ﬁ[a] is the exterior algebra generated by a with
coefficients in 2, and Zp[x} is the polynomial ring with
coeffioients in Zp. The grading of H,.l (Zp; Zp) is obtained
by assigning deg a @ 1 &and deg X = 2 Y‘S ; Chape XIT .

l. 2. In the ring H' (Zp; Zp), P22, we shall need
another cohomology operation beside the product, namely
the Bockstein operator € « This is tne coboundary

’i}s= B (2p; 2) —> HS*L (Zp; 2p)
assoociated with the exact sequence of coefficzient groups
0 =5 2p-+Z2p2->2p, > 0.

is an isomorphism if 8 is odd, and 1is trivial if s is
even and s +0, In perticular, we nay choose &8, and Xx
such that (3' (a) = xo ‘

Suppose that /. 1s a vector space over the field Z.p,
that the group Zp operatos on A as a group of linear auto=
morphisms and that & is trivial,

l. 3. lemma, If AT; 0, then i = Os

Proofe For any ..., we have

02T (s Ty o ppPe2(x )).

Since sl = 0, it follows that TF2(c)w 0. Repeating
this argument, we have TP 3 (%) a0, TF 2 ‘)z 0, eee,

& = Oe

\s



3
l.4e lemma, If aim AT (Aimension of 4T) w4, t
dim » € p-~l.

)}

Proofe The sequence
04— 4 —TA =0
is exact and hence splits since . is a veotor space.
Choose ot ¥ O such that A u z,pcx,e TAe If &t € A i8 any
element of L, there exist We¢ € 2Zp end p‘ € A such that
(1) K= not,+T(B)
Similerly there exists W\, & Zp and @ 2 € A such that

(2) @, =n,e, 4+ t(8,)
Substituting (2) in (1), we obtain

. (3) o m Mg o, @ T (Me) +T(B,)
Repeating this argument, we can find @, n, » .w_,‘z'
ond Bo €A such that

e-!

(4) & = moo,t(g)on.t‘h)* vas ""»i"?&)‘“p-to (8,-0)

The last term in the right-hand side of (4) vanishes be-

ceuse T.'"'s ¢ = 0 by assumption. Hence (4) reduces to

(5) IR ATOY e, PR,

48 & 1s arbitrery, this means that the set kg Tety, -
T P"-.’ is a set of generators of 4, which proves the
lemmae

Suppose that X is a compact Hausdorff space and that G
acts on X as a trensformation group. We denote the orbit
space by X/G and the canonicel projection by w : X x/G.
let H *(I;L) bo the Llexander-Wallace-Spanier cohomology

L Y



4
of X with coefficient in a ocertain group L. Then G also
operates on H*(X;L) as a group of automorphisms so that
H*(G; H*(I;L)) would make sense., let H*(X;L)G be the sub=-
sroup of invariant elements of H*(x sL), 1.e.

B (00 o {xer'mn | e" W) aocror en1 e €
In ocase G w Zp, this subgroup will be denoted by H *(x; L)T*
where T is a generator of Z.p. The following welleknown
theorem of the lerey-Cartan spectral sequence is the main

tool thet will be used in Part 1 of this paper.

1. 5. Proposition, If a finite group G acts freely
on a compact Haysdorff space X, then there exists a

speotral geguence (E,) whose Ep - term is given by

B,% = H8(6; K (X;L)) ,
and whose E - term is assocjated with 1 (X/6;1). More-

over, we have the following computative diagram:

v (X/cs1) s 8%(X;1)

AN

et Lt |,

By ‘
Where s’* is tne canonical "edge homomorphism" (_5 HE 352],
and 1 is the inolusion.
A proof can be found, for instance, in {3].
1. 6. DBesides the leray-Cartan spectral sequence, we
shall also occasionally make use of the Smith special co-

homology theorye. Following [l], a modern version of thls

(Y}



theory can be dssoribed bdbricefly as follows.

Let Zp act freely on X, Consider the Leray sheaf A
asgooclated with the canonical projection : X-* x/zp. This
is a sheaf over }C/ZxJ whose stalk on cach yé JC/Z.p is givén by
H ("T.'(y) ) = HO (f‘(y) )» where Zp is used as the co-
efficient group. Now the group Zp operates on A as a group
of sheaf automorphisms so that we can consider the endo-
morphisms T wl=T and €= Z".; t' of A, where T is a generator
of Zpe Following usual convention, if one of them is de-
noted by p, the other will be denoted by ? « The cohomology
groups H' (X/Zp; PA) = §° H® (X/2Zpie A) of X/Zp with
coefficients in the sheaf of ¢ A are celled the Smith special
cohomology groups which we will donote simply by H* (e)e
It can be shown that

0 —s A &4 £,p4 —0
form an exact sequence of sheaves whure ¢«§ is thse inclusion
aad that w* (x/zp; A) cen bo ideatificd cenonically with
H (X)e Thero is therefore an axact scquence "

cee By (B) Bius (x) €518 (o) S5uetl(5) 8.,
of conomology groups whick is known as the Suith sequence.
Moreover, H# (&) ocan bo identifizd caenonically with 1 (X/2p)
and this identification carrics ic.*: H® (o) —»HS(X) over to

‘l‘"z H s(](/Zp)-‘»l-is(x). We have therefore two exact
sequences.

*
vee &y 18(X/25) Ty 12 (X) ER 15 (1) 515 L (x/2) oS

AT



wnd

.\* . . W
e Xm0 S (0 T sx/zy) & iy Y L.,

Finally, it is not difficult to see that
W *
("? ¢ . i-p and
weesd =ZF 1
1z
[l 3 DPDPe 40‘42]0
We call a compact Hausdorff space X . cohomology
n-sphore over L if its ocohomology H*(X; L) is thc samo as
that of the n-sphere, 1.6,
L if 8 « 0, n;
B (X; L) a S
0 otherwise °
We agroe that the emprty set is rugardcd as a cohomology
(-1) - spherc ovoer Le A cohomology n=-sphar: over Zp will

also be called a cohomology n-sphure mod p and a cohomology

n-gsphere over the group of intcgers Z will also be called

an integral cohouology n=-sphurce

l. 7 Proposition. If X is a cohomology n~sphcre mod p
oa which the group Zp actg, then the fixed poirt set F (Zp;X)
is a cohomology r-sphe:’ mod p for soms ~1 £r ¢ ne. Moreover,
n-r is sven if p is odd.

This 1s a well=known tv.eoruvm of P. Ae Smith, criginally
formulated in terms of homology under tnc essumption that X
has finite Lobusguo covering dimepsion tl’?] e It was sub-
scquently cshown by L. Mann {14] s 8lso in terms of homology,
that the dimensionality condition can be rcmovode The above

version is just the dual form of Mann's rosult,

.
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l. 8, Tlrnell;, wo shall nsod cne more tl.eorem concerning
the aotion of 2p x Zp on a cohomology n-sphore mod p, X
The fixed point set F (Zp X Zp; X) is of course still a
cohomology sphere mod p, say of dimsnsion r. Besides,
Zp x Zp oontains p-1 non-trivia. cyclic groups Ni, ix0, l,ee.,De
By 1.7 cach F(Ni;x) is & cohocmology nj~-sphere mod p for
some ny, 1=0,1,6ee;Pe

l. 9. Proposition, Lot 2p x Zyp act on a cohomology
n~gphere mod p, X« Lot N1, ny, 1e0,1,ee.,p and r be as in
l.8. Then

aé_o(ni-r) z DT,

Tiris proposition can be found in [}; Pe 175] where X is
assumed to have finite cohomology dimension over Zp. Again
this condition can bs removed, Indeed, thu finitc dimonsion-
ality conditicn is usud only to assure that H*(F(Zp b ¢ ZP;X);ZP).
H*(X/zp x 2h5 25), B (F (N X); 2p) ana 2'(X/NY; 2,),
120y 1,e¢e,P, have finite dimcnsions whon H*(x; Zp) doos.
By Mann's rusult [14;} s this 1is truv without such

restriction.
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Ssotion Z. Johomology ruel projective spaces and cohomology
lense spaces,

Throughout this section, X is e compect Heusdorff space
on whioh Zp acts freely. Cohomology always has Zp as the
coefficient group, We shall distinguish the cesc p £ 2 from
other primes; so we shall write out tie cousfficlent group
in the cohomology for this particular cese and H*(X) will
denote H*(I;Zp) only when p # 2.

2. l. Definition, 4 ocompact Hausdorff space Y is said to
be a oohomology real projoctive n-gpace if the cohomology
ring H*(Y;Zg) is given by

H*(Y;Zz) w2z (x}/ (x2*1), deg x = 1,
whore Zg [x] is the polynomial ring with cosfficiunts in Zg
and (xB*l) is the ideal genoratea by x2*1,

2. 2, Definition, A compact Hausdorff space Y is said
to be a cohomology lense (2nel)-gpace mod p if the cohomol-
ogy ring H*(Y) is given by .

H'(Y) = A [a]@Zp[x}/(xn"l), Geg a = 1, deg x z 2,
and if B (a) » x whore £’ 1s the Bockstair coboundary

¢ : L (V) - B(Y),

Noticu that the anti-podal map (a map in this papor 1is
elways meant to ts a continuous one) on the n-sphere SP defines
a frec acuvion of Zp on SP for wiich the orbit space is the
real projective n-space whoso iod 2 cohomology is exactly

given ty 2,1 Similarly, if we lot
; i ,
sénl g i(zo; eee 9 2p) | 2 |zﬂ2 = 1, zj complex numbers}.
\:0



then the uap
anol_, Sznd
(Zos see 5 Zn) —# (200% 1/Py aes znez'i/p) p¥2

dofiucs a free aotion of Zp on 82841 £or which the orbig
space 1s the lense (2n¢l)-spacoc mod p [15] whose mod p
oohomnology is oxectly given by 2.2. Thesce motivote the
definitions just givon. More generally, we have tho following

2. 3. Proposition, If p # 2 and X is a cchomology (2n+l)-

sphere mod p, then x/zp 1s 8 ocohomology lense (2nel)-spece
mod D.

Proof. "We observe first that
H® (X/Zp) = O for all s»2nel,
This follows from | 14; s
Consider now the lorey-Cartan spectrel sequence (2p) of
le5e As
£°3% H%(Zp; H®(X)) = O for all t £ 0, 2n+l,

theres cxists an cxact sc~usnce

g-2n-2, 2n91 25" -2n-1, 2ae¢l
2

&s
E330 —o1° (x/2,) —» -t
where ¢’ is tho canonical cdge homomorphism (5; Pe 326 ].

XX —-’E

This gives immediatcly that
8,0
$: By —» H(X/Zp)

is an isomorphism for all 0€ c€2n, For s = Znel, we have

tae exact s2quenco .
- 2 A 0 2n 1
OaPE lé2nv1 - Eun?:l,o Hzx '1(X/Zp) — EZnatz.O

—> 122*2(X/2p) a0,

0,2nel 2n+%,0

| 0
Since E ’ 2 E 2 -zp’ E0é2n¢l c.n02

E 2 must

LYY
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neousserily be an isomorphisme Henoe %M' is alsn an
isomorphismes The desired cohomology structure of x/zp thon
follows from l1le2

In exactly tho same way, one can prove

2e 4. Proposivion. JIf p = 2 gnd X 1s a cohomology
n-sphere mod 2, then X/Zs is & cohomology real projective
n=gpaca.

The main purpose of tha prcsent ssccetion is to provs the
converses of the prec3ding two propositions.

2. 3. Theorcm. If p # 2, X is conngctod and X/Zp is a
cohomology lunse (2n+l) =8pacc mod p, then X is a cohomology
(2n+l)-gpherec mod pe '

Proof. 1In the leray-Cartan spactral sequence (Ep) of 1.5,
we first claim

(1) ¢‘: Eséo—, Hs(x/zp) is an isomorphism for all

1l <€ s % 2n¢l,

t2) W*: #°(X/2,) ~» F(X) ie triviel for all s 1.
There ¢xists an exact suquence of lowasr terns

(3) 0 — B0 & wlx/z;) Do 20 23 %10 28 2 (x/z)
(5; P. 328]. If n 2 0, (1) and (2) follow dirzctly from the
cxactness of (3). Suppose that n *0, Since X is coanccted,
2 - B 20 - s;'S:.‘,u"'(zp; H(X) = :‘:?arf(zp; Zp) o

Iet a € E ’? bo & gunerator cf Eléo; a' = Q.(a) is a gencerator
of Hl(x/Zp), siuce @ wust nucessarily be an isouorphism.
According to le2, X = @'(a) is a goencretor of Ezéoand in

vicw of definition 2.2 and tho agsumption that n»0,

\s
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¢, (x) = dop'(a) = (od(a) zp(e) # 0.
It follows that Ql is also an isomorphism. Since a and x
generato thg ring H*(Zp; Zp), (1) is proved, From the cxact-
ness of (Z), we havo

** (0 (e))e 0

80 that

THPUX))= e p s B, (a) = gor'yb (u)s e'(t"(;‘}.(a 1)) =0,
Sinco @ (a) and ®, (x) generate tho ring H*(X/Zp), (2)
is provead,

et us drew some conclusicns from (1) and (2). By (2)
end 1,6, wo sse that

pee

(4) X T*t: H®(X) —s H°(X) is trivial for all s2l,

L0

whore, as we recall, T denotcs a generator of Zp and T*:
18 (X) -» H8(X) is thc homomorphism induced by T. From (1),

O o250 for all 1€s€2nrl, This implies

wo deduce that ES3
that none of Esfo. l€s<2n+l, r22, can have any non=zero
cobounding elemsnt, Honce
(5) dgyy: E01S —» ES100 15 trivial for all 1%s<2nel.
Moreover, since
ain B (X/2;) = E ain B50°"
. a . zp . T33O had
and, by (1), ,
H(X/2p) = In g m E%, 15 8¢ 2ml
it follows that

(6) E0,s

s w0 for all 1¢ s€ 2n#*l,

W3 now procced to prove by induction that

e
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(?7) HS(X) o C for ell 1Xs<2n+l,

For n « 0, theru is nothing to prove. Therefore we assume here
that n»0, By (1) and tho exaoctness of (3), we have Eoél s Oe
By l.l and 1.5, this means Hl(x)T* s O so that by (4) and lemma
1.3 wo havo HL(X) w 0. Suppose it has been proved that a(x) =20
for all 1£1 <s<2n+l, Considor the difforontials

ap: 2028 50 2T,
Clearly d,. « O for all r>s+#l, If l<r <s+l, thun l<sg=r¢l<se.
By induction hypothesis wo have

Fri T L (2 #TYX)) 2 0
So that B¥1,5°T*1 4 0, Hence ar: E02% —~ ET» 8°T*1 15 trivial
for all r22 and r ¥ s+l. But dgey: Egl —» ES10 45
trivial by (5)e We can thor.forc concludse that dp: Eofs -
Er§s'r°l is trivial for all r 22, or vauivaluntly that
Eoés = EQ’S « 03, By 1,1, 1.5 and (v), this gives

BT . £%° o 2015 - o,
Hence again by (4) und lemma 1.3, we conclude that H%(X) = O.

Next, we teke up the case when s = 2n+l, Again we counsider
tnoc differentials,
dps EO£‘2n¢l__’ Eri.znoz-r.

With the aid of (7), which has jusl beean proved, it is easily
seon that dp: E°§2n*l._. Er;2n02-r is triviel for oll r2 2 and

r ¢ 2ne2, We have therefors Eg52201 ana £022011 _ g0,2a¢l ¢ o,

2n+3
where the lest uquality nolds lecause of (6)e But by def-
d
inition, E04281Y o Ker (E0820,1 2702 E20%240) 4o that dpyp:

Eoéﬁﬂgi -y Eagaiéo is e monomorphisme Similarly consider the

\,
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diffurentials

Agein it is easily seen, with thie help of (7), that dr is

trivial for ell r22 and r # 2n+2, We havo therefore

+2,0 n+2,0
220500 o B82 200 ena 2¥0008 = 8520 ¢ HBRR(x/2) . o
But by definition,

2n+2,0 +2,0 0,2n+1 2n+2,0
Eopes = Ezgmé / Im (E"An42 dinez B oned )

. . m0)2ne+l 2n *2

and hence an isomorphism, sincs it is slready krown to be a

éo is en spimorphism

monomorphism, Wo havs thus provod that Eoéznﬂ' s EOp204l X
Eagr:aoéo = Eznz‘z’o = Zpe
By (4) and lemma l.4, we deduce that

aim B2°* (x) 5 p-1.

Of course this does not dctermine H2n01

(X) coupletely yect.
We shall come back to it aftur determinirg I3(X) for s> n+l,
Now we claim that H3(X) = O for all s>2nel. Using tnz Smith
sequence of 1.6 we have, for s> 2%+l, the exact sequences
0 w B (X/2p) = 13(X) Epn®( ) —» 8% (2/2)) = 0 ana
cee = H(¥) “Ep HO(X) = HB(X/Zp) = O.
From thesc wo see immadiatsly that
irn® C®a1-17"
is an opimorphism on B (a) for s »2n+l, Hence
H(X) = (1-T") H3(X)
. (1-T)2 38(X)
|/ eoe

= (1-1) =1 B8 (x)

\s
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e-\ i
‘20
s O for all s»2n+l,
Finally lot us return to n2n01 (X)a Since now we have shown
%*
that dim H (X)€oe , tho Eulur-charectoristic formule of Floyd
(Of. 1l; poe 40)
oe oo
T (<)% alm B9(X) = p & (-1)° aim HO(X/2Zp)
S=0 SO
can be applied. In our caeso, this reduces to
1 - aiw H2R*L (X) 2 0 or
HZn+l (x) = Zp‘
This completes the proof of 2.,5.

The nuxt theorem is anelogous to £.5, but the prcof ic much
simplare.

2.6, Theorem. If p = 2, X is connected end X/Zg is a
cohomology real projcctive n-gspace, then X is a cohomclogy
n-3gphera mod 2.

Proof. Just as in 2.5, using the exact soquonce (3) aad
definition 2.1, ons deduccs that

(1) w®: 48(X/20; 2Zo) = HS(X; 2Z3)
is trivial for 2ll s2l, Now consider the Smith sequence of
l.6. Owing to the fact taat for 22 we have T =4, the Smith
sequence recucas in this casc to

% wh s L9y
cor 2o U8 (X/2Z0;20) —~ HS(X;Zp) —» H®(X/25,22)
.
Lﬂs l(X/Zg;Zz) Looo .
From this and (1) we corclude immcdiately that

Z2 iIf smeo, nn
H(X;Z;) = {9

otherwise

\e
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2.7+ Romarke In thc proof of %5 and 2.6, we have emploved
both the methods of spectral scquence and Smith special conho-
mology theory. It would be desirablo to give a proof using e
- purely spectrcl ssquonce ergument. This can be done for 2.6
One can rirst prove by induction thet W¥(X;Z,) = O for all
1 &£s <n in thc samc way es 2,5, lext, still in the same way
as 2.5, one deducss that dim H?(X;Z2) €p-l = 2-1 = 1. But
this timo it would determine Hn(x;Zg) withouv waitirg for the
information of H®(X;Zg) for s»n. Then, one cen prove inductive-
ly (by acsuming thet H2*J(X;25) = O for all 1¢j<i ) tho

existensu of 1n oxact suquence of vhe form

’ S 2
+l
(cfe 643 of Part 2), Since Eién = Enré 0 s O, WC know 8.

*
is an isomorphism. By thu product structurc of H (2p322), onc
can doduce that ©,,, is also an isomorphisw, which implies

*
Cén’i e H**4(X;2,)T = © and heaco H**3(x;25) = 0.

that ©
For p # 2, ¢ similar oxect sequciice can also be constructede
But we erc not eblo to determino the product and Becekstein
operations of H*(Zp;Hzn*l(x)), sinco our knowlcd.e on HER*l(x)
comes later. This soowe to bc tias reason for the broaekdown

of this methed wacn p ¥ 2,

L
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Seotion 3. Cohomology covering speces end lifting of actions

In the pruceding scction, we showod that if a free action of
Zp on a oonnsctod compact Heusdorff space X is given such that
tho orbit space x/zp is known to be a cohomology real projective
spacu or a cohomology lense¢ specc mod p, thon X is itsclf o
cohomology sphurc mod pe We wish to know now thet ziven a
cohomology real projuctive space or a cohomology lense 3pace
Y mod p, cen we clways find a free actlon of Zp on a connected
compact Hausdorff spece X such that the orbit space is Y?
Mors generally, we wish to invustigatc the quosticn that given
a conncotod compact Heusdorff space Y, when could Y be
homoomorphic to the orbit space of a froc action of ZP on a
ccnnected compact Hausdorff spacc X. Wo sheall show in this
section that undor a rether rild condition such an action cen
cctually bec constructede The method rusembles very much to
the construction of the universal covering spacs cf a pathwise
connucted, liocally pathwisc connected ocnd liocally pathwiss
simply connected spece witin the dual of tho first cohomology
group playing tnc role of tho fundemental groupes Iet us agrece
again that in this scction all cohomolegy groups have Zp as tho
cocefficiont group, but no distinction will be made for p to be
oven or odd,.

3s le Supposc that Y is ¢ connccted compact Hausdorff
space and tnet &€ HY(Y) is & noa=zero clemunt. Iot
f: Yz-—O Zp be a 1- cocycls repruscnting @ . Then there axists

an open covoering ar of Y such that

\e
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(1) (ygs¥5) = £(ygsyy) #+ £(¥1,Y,) whenever yg,y;yp € VEAS,

Fix a point b€Y., By af\J -ghain we meen a finite
sequence (5'1)150 of points of Y such that {Yi-le;S is
contained in some V4QAS for all i = 1,2,sse,0e By a Af-ohain
with bese point b we mean a Af-chain (yi)igosuch thet yosbe
The set of allJ -chains with base point b is denoted by X .
Two elements (y,)4g, 8nd (y.;) JEO of X are said to be
egquivalent ir

(1) Vo = ym and
(1) F £ly7,) g £(7§-1sV])e

This is obviously an equivalence relation. The quotient set
of X under this equivalence relation is denoted by X and the
equivalence class of (y,) i’.’o‘x is denoted by {v;] 312¢¢
Also, the function®: X -3Y given byﬂ'([yﬂ 189) =yp is clearly
well-defined.

Now we topologize X es follows, Xor sach x & {yy ] 134
of X, the set

B (M(x)) = «B(l(x))|‘ﬂ’(x)€ B(m(x)), B (®(x)) open in Y
and B(M(a))eV fer some Vc'\.f} forms a base of reizhdborhoods
of N’(x)(Y. To each B(F(x)) €  (®(x)), define

(3) B (x) w3(v]] 4% | ¥ € BT,

‘L'(yi 1oVa) 4 Ty v i- t(rJ..r.1 1! -O}-

J-

It is straieh*f'orward to verify that a topology Y can be

\s
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dofinud on X for whioh

Ema {5 @|s(Mxed v}
forms & baso of open noighborhoods of x.

The topology J is Hausdorff. 1In fact, lot X = [yil 135
and x' = [yi]dfo be two distinot points of Xe IfT(x) £#W(x'),
wo may tako B (W (x))& @ (W(x)) and B' (W (x')) sucr *-~*

B (m(x))NB' (m(x')) «Pe It is thon cloar that B* (x)N

B'* (x') gte If M(x) @ T(x') wy, we take any

Biy)€ @ (v, Ir 2" o [vk] Lo € B* (x) n B* (x"),

WG t:avo by dqfinition' ) .

.L’ £(y3.1074) «-r(y.y;H “2" f(y{;.y;_l) = 0 and
Zf(yj-lgyj)ﬁ-r(y.y;). 4 £.Ygo¥y 1)) = Oe

4% wg

This givos
,‘i_.f(yi-l.yi) . g.f(yj.'.pyj).
contradicting the assumption that x # x°'. ‘

It is cesily secn tnat under tho topology J , W : X Y
becouwes & coitinuous map. In fact, for any x€ X and
B(w(x))€ B (m(x)), TV maps B*(x) howeomorphically onto
B(W(x))s Hence W is e local hom. nmorphism. MNoreovur, there
oxists an open covcr;’ms‘\!’of X sucn that overy V*t Sy is
mapped by W homoomorphically onto sors V€U,

3e2¢ lomma. Fcr cach v € Y, W.‘(y) has exactly p points.

Proof. It is vasily svon tliat the cardinal of 'll’.'(y) is
indopcndent of y; hunce it suffices to consider the cess when
y -nb. The function ¢ :W.'(b) e ip defined by @ ([Yi] 120)

- _‘L" f(Y:l-l'yi)' whore f_yﬂi‘:‘o(ﬂ (vb), is obtviously injuctive,
Moroover, the imugoe of ¢ i5 & subgroup of Zp. ror

@ (yi‘} 1:0) '¢([V;) Jﬁ% =d ([Yg] ;:g). whero

s
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Yn if - 0Sk¢n
5.
Y n4m-k if n¢ksipném
Furthern;oro, & ({(t]) = £(b,b) = 0. Thie subgroup must be
either Zp or O If it is zero, we define a O-cochain
g: Y- 2, by g(y) = t’- JT(¥4.30¥4)s where (y,), 0. ic any
OF ohain with base point b such that yey. Such a(\ -chain
exists (uinoe.Y is conneoted) cndé g is well-cefined, If
v,y € VEU , we Leve
glrt)=nly) = £(y,7'),
boceuse ve can represent gl(y') by E.‘ f(yi_l,yi) +2(y,y') =
g(r)+ £ (y,y")e But this means £ is cobounding, contradicting
the assumption that &£ ¥ O, Hence the leauma is proved.
Notice that 3.2 also implies that . is compact,
3.3, Leums. The homouorphiam T : HL(Y) =5 ul(x)
induced by 7 : X -»T mapg ¥ into zero,
Proof. The funoction h: X 92, given by h( i) =
- %|f(y1_l.y1) is clearly a well-defined O-cocrein cn X.
If X w [yﬂi’.‘o and x' = [yJ]J‘foare contained in some B*(x"),
where x'@ [y;]k}o.
Acoording to (3) we hLave
if(yk l.Yk)+f(yl.yn)+ 43— ,Tlygevry ) = 0 enc
E.::'f(yk 1.yk)*f(y1.y e E f(yj.y ) =0
Henoce
{1,y -£(¥1,¥y)
(], YR (7,,¥))
$(ypyg) »

S v oY
f(yi’yi-l) - j%lf(yj,yj'l)

u. M 3

s
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or
h(x) - n(x') = £(Mx),T(x")) .

This means rreocisely tnat'lde) s 0; hence the lemme is proved.

By a'\f'fg_g_g we mean & finite sequence (xi)ifo of points
of X such that ixi-l’xi} is conteineé in some Vi*i‘\r* for
all ial,2,400,00 AV Zohain (x4) 43, is said to cover a
V-chein (yy) 40 1 T(x4) = ¥y for all 1z0,1,.ss,0. Notice
that the funotion h defined in 3,3 has the following property:

(4) If o “chain (xi)ifo sovers e\-crain (y3)48,, then

3. £(y4.1073) = hxg)=h(xp)e

3.4, Lemma, (Chain lifting property and monodromy
property) Given 'V =chain (yi)igo and a noint xe“-‘(}'o)o
there exists e unicueW '“onain (x,),% such that (x4);5g
sovers (v4);%; and xo = xo IL_ (v4)sfo 20d (vy) 7, are gwo
A -cheins such that Yo = Vo 288 ¥ = Ypo (X1)4op and (x)) o
are two A *ghaine coverins (vi)s%p #nd (v4) T, respeotively
such thet X = x4 Then X, = Xy if end only if

3‘_ £lyg.10¥y) = :i:.f(yjll.y;).

Proof. The first part of the lemmes is an immsdiate
consequence of the fact that w is a locel howecmorphism cf
X onto Yo For tns second part, if x, = x,;, we have

& £ly,10v1) = Blxg)-nlxy) = h(xg) -h(xg) =

:x:‘,‘r(yj-l.yj'). |

Coanversely, if _':’.;.r(yi_l,yi) = :2_. f(yj_pys). then by (4)
w3 have h(xg)~h(xp) = h(xé)-n(xn',) and hence h(xp) = h(xp)

since xy = X« Since T (x;) aip = Yo =W (xp), we have
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Xp = Xp by the definition of h and (2).

3e5. Lemma, There exists & free action of ZponX
such that X/Z, = Y and 7 coincides with the canonical

projection.

Proofs Define a function S on ﬂ:‘(b) by S(x) =
‘Pﬂ(‘*(x)ﬁ'l), where ¢: % '(b) - Zp is the function defined in
3.2, Let us extend S as followss If x = fys)slo is en
erbitrary point of X, we let (xy) 48, be a ¥ %chain covering
(y3) 430 Such that x5 = s({b)) and then define S(x) axpl
This is well-defined in view of iemma 3.4. Now let us prove '
thet S is continucus. Take a ncighborhood B*(xn) of xp = S(x),
where B(y,) is a nei_ hborhood of ™W(xp,) = W(x) & yge If
x'e B*(x), then x' can be represented by [yﬂg;%, where
Vnsl aW(x')€B(yy)se Since wmaps B*(xn) homeomorphically
onto B(yp), there exists x,,, ¢ B*(xn) such that W(x  ,) =
Ynele It follows that (xy) f:% 1s & V-thain which covers
(yi)?:% with x5 = s({v)). By definition we have then S(x')

"X, 1 € B*(xn). It is clear from the definition of S that

n+
we have h(S(x))-h(x) = h(Sfv}) so that n(x)-n(sP(x)) =
) h(S[b]) s Oe Since M(x) = W(SP(x)), we must have SP(x) = xX.
Hence S is a periodioc map on X with period p, Finally, S has
no fixed point. in fact, for eny x<¢X we have h(x)-h(S(x)) #
-h(S[b]) =1 #0; hence x # S(x) for &ll x€X.
3.6, lemma. X is connected,
Proof. Consider the exact sequence

* 0,1

1,0
0- Ej - (v Teulyl - 220 — 2(y)

LY
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of the Lerey-Carten spectraul 3equence (ofe. (3) of 2.,5).
By 1,5 and lemma 3,3, we have dim (Ker!ﬁ 21, Therefore by
l.l cnd the exaotness of the above sequence wa Leve
ain ¢HO(X) /1H0(X) w aim E120 & aim (Ker W )3 1.
On the other hand, we lave obvioiLsly Eoéo = E?,;o = HO(Y).
By 1.1, 1.5 and the ocnnectedness of Y, this gives
(5) aiz B*(x)S* ¢ ain EOYO 4 1.
But (5) means that THO(X) is & hypsrplene of HO(X) so that
aim HO(X)/x HO(X) ale
It follows that
dim HO(X) /o HO(X) =z aim HO(X)/x HO(X) - aim
'Ho(x)/t #H(x) € 0.or ¢ HO(X) = HO(X). Thet is to say,
,:gos*‘j" is triviel on HO(X). By (5) and lemma l.4, we have
(6) aim HO(X) € p-1.
Hence X haes at most p-~l components,

Suppose that X is not connecteds Iet C be a component
of X¢ We can not have S(C) = Ce For if so, 7 (C) would be
a proper non-empty subset of Yo As X has oniy a rinite
nunber of components, C is both open and closed in X and so is

w™(C) in Y since v is an open map and X is compact. This
contradicts the fact that Y is connect3d. Therefore we nust
have S(C ¥ C and hence £ has et least p compoients, contre-
dicting (6).

3¢7. Remerk, We noticz that in thse proof of 3.6, we
have also shown that dim (Ker T?*) = le In other words,

Ker ﬂ*is precisely the l-dimeasional subspace of Hl(Y) geler=~

atsd by°’~ .

\s
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Collecting 3.1 - 3.7, we have proved the following thecrem,
3¢8. Theorem, JIf Y is a connected compact Heusdorff
spece, then for every non=zero ¢lepent e € H1(Y) there exists
8 oonnected compact Hausdorff spece X agnd & free action of
Zp on X guch that X/2p = Y and tho kernel of the homomorphism
**: H1(Y) = HL(X) induged by the canonical projection

TW: X-»Y is precisely the l-dimengjonal subspace generated
by ol e

The space X of 3.8 may be called a cohomclogy covering
space of Yo This space can actually be chorcctorized ebstract-
ly. The techniques involved consist largely of rcpetitions
of the erguments used in 3.1 through 3.6 So we are content
to give here a brief sketoch.

3.9. Definitjon. Let Y be a connected compect
Hausdorff spece and % & non=-zero vlement of Hl(Y). By a
oohomology covering gpece of Y with respect to<- we meen a
compact Hausdorff space X and a Iree action of Z.p on X such
thet I/Z.p e Y and the kernel of the nomomorphism W*:Hl(Y) -» H1(x)
induced by the canonical projectionT: XY is precisely the
l-dimensional subspace generated by,

3,10, Let Y,e Dbe the some as in 3.9 and X a cohouology
covering space of Y with respect toX « Just es 3.6, we can
prove first thet X is connected. Using the condition that
f"*(':t) = O and the fact that® *is & locel homeomorphisn of
X onto Y, we cen find an opsn covering™of Y, & l=-cocycle

»
f on Y, an open covering ™ of X and a O-cochain n on X such
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that (1) and (4) holis and such that cech Ve ’U'*:'Ls mapped
homeomorphically onto somo V €Y by ¢ , With these we can use
the notions of W -cheins, '\f"-chains end ocovering chains,
Because of tho condition thet = £0 anc the connectedness of X,
we can prove the chain lifting property and the acnodromy
property of 3.4. Aifter this is establisnhed, the following
uniguoness threcrew oan be proved LY standard argument.

3« 11o Theorem. Lot Y be & comnected compact Hausdorff

spacc end ® 2 non-zoro glewwnt of HL(Y). If X ang 2' ere

two cohomoloyy covering spaces of Y with respect to «, then
thers oxists en equivarient homeomorpaism O X=»x' of X
onto X'. More explicitly, we hove the following commutative

dicgram

X—?—bk'

N A

Where " and ° gare the cenoniccl projections. Furthermors,

if X¢ end Xo' cre cny two preassignced points of X and x!

such that W (xy) = 7 (x,'), then B cen be chosen in such g way

that O (xp) = x,, 2ng it is completoly deteraiued by this
concition.

3. 12, Agnin let Y be &« connscied compact Hausdorff
spnce, K a non=-zero cleuen. of Hl{Y) and X a colcwology
covering space of Y with respect to®X, By aefainition thare
exists ¢ free action of Zp on X which we represent by &« per-

iodic mep & (sec T.5) cnu eall it tho "deck-trancforaction'.

\s
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Iet us cssume now thet tho spcoe Y itself ocarries en eotion of
Z2p; in other words, we heve a periodic trensformation T: Y=Y
of period pe & poriodioc map?: X = X of period p is said to be
a 1ifting of T if it commutes with the canonicel projection
e X 9Y, i.0 if T’o\Tlg T oW, Yo wish to study now wicn such
a lifting oxists. To do this, let us adjust the construction
of 3.1 urder the following cssumptions:
l, There is ~an zction of ZP of ¥, 1.6 we heva & pericdic nmep
T: Y-3Y of period p.

2o is invariant undur T*, i.c T*(&) =X, where
T : HL(Y) - H1(Y) is the homoworphism induced by T.

3+ The fixed poirt set of T 1s nonecmpty, i.e tiiere oxists
b€Y such thet T(b) = b,

Just ¢s in 3.1, let f: Y2 = Zp be a l=cocycle reprasentiug
L o Using conditim; 2, 1t is ersily sean tnait there exists au
odPer. covering of Y and ~ =-ccochain k: Y-3 3‘) with the »rop-
erties thet (1) of 3.1 .olés, that ?(V)e€W for ell VEé AT -nd
that
(1) k(y)-k(y") = £(7,y")=£(T(.),T(.")) whunever
T, y'€ VS .

Coastruct the uet X and tnc space X in tuc seias way «f 3.1, but
with the agreemont viiut the base poiut b is toxken to be a fixed
point of Te Then X is o coi.omology covering space of Y ..ith

~

respect to & Nuw clearly the function Vi (4) 'n = (T(. 1)) n
im0 - T 1i=0

maps'x into itself. Morcover, if 'y; iﬁo = \_y3=.ljm0’ then,
-

by (1), we have

\s
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2 220y, 1),2g)) w8 £ £y ayy) = (x(0) - slyg)

L)

3ﬁ,r(yd'_l.y:;) - (k(v) - k(y3))

« £ 0Ty DT )

[ ]

o) n A4 n A -

Hcaoe ?([yﬂ 1-0) ‘[T("i)] 1.0 is o zf’ll defined funotion
of X into itself. It is eesily sean that T : X—= X ic a
periodioc transformation of period p and thet it is indeed a
lifting of T.

We cleim that ;oommutes with S, where S is the deck=
transforumation Gefined in 3.5. Let S([b}) = [yi') 120‘ Then
VnaW (s[b]) - b, By (1), we have

:r(yi-l.yi) - ; £(Tlyy_q)s TUyy)) = k(b) - k(b) =
in other words, ¥ (SLb]) - S([b). Now if x = [3'3),1?0 is an
»
arbitrery point of X and (x:)Jn.‘o is vhe\J =chain covering
(Y]
(yj)J':O such thut 16 = s( [b)), then s(x) = xn'z‘ But
(t (xj)) .1 is & Af “ohain covering (T(yJ)) B cuch that
Tlxg) = T(s(CM) = s(Y.
I !
By thce édefinition of S Vf nave chen ?(xn’l) - S(LT(yJ)] 3?0).
thet is T o S (x) « SoT(x)e

3.13. Proposition. Suppose that Y is & connected compact

spece, that T is ¢ periodic transforuacion on Y of period p
such that the fized point set of T is ncn-empty, thetet is a

non-zcro elenent of H1(Y) which is invarient under T* ang that

£ is @ cohonology cove*'ing space of Y wivh respect toe,
Then T hes a lifting T on X wiich conmutes with the deck-

trensformction S on X,

\,
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Proofs 3.13 i3 just proved in 3,12 when X is the
speocifioc oohomology covering spece constructed there, The
cagse when X is en arbitrery oohomology covering space of Y
with respect to % then follows from the uniqueness theorem

of 3ell.

e
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Section 4, Fixed point set of an action of Zp on a
cohumology real projootive space or on a cohouwology lense
space mod p

In this seotion we discuss the fixed point set of an
action of Zp on e ocohomology rcal projeoctive spcce or on a
cohomology lense spesce mod pe Our object is to show that esach
component of the fized point set of such an sction inherits the
same cohomology structurc of the spaco itself. All the
mechineries needed have 2lready been btuilt up in the previous
two sections and it is now just e matter of patchinz them up.

4.1, Theoram. Suppose that Y ic e cohc.iology lense
(2n+l) - spece wod p on whioh Z, ggts, where p # 2. Then the
fixed point get F hag gt most p copponents cnd every gomponent
of F is g'cohomolggx lenss cpace wod pe Jf F hes K cowmponsnts
ClseeesCxy 1¢K¢p, and C4 is a cohowology lense (2ny+l)=-Space
mod p, 1 w 1,2,e00,yk, then

{ nj = n-k+l ,

Pr‘o’o.f. Je may ¢ssume that F is non~empty, for
otherwise 4,1 is triviel, ILet T be & (enarator of Zp and
o a generator of Iil(Y) - Zp. ILet X by & cohomology covering
space cf Y with recpect took, Such an X 3xists by 3.8 and
according to 2.5 X is a coinowology (2n+l) ~sphers wod p.
Since O is nucessurily invaricnt under T*, by 2413 T hes a
lifting #on X wilch conmutes with the deck-tvraans{ermation

on X (cfe 3.12)s It follows that ?"and S topethor defirne an

action of Z.p x Zp on X, lLet Jr be the cet of all non-%rivinl

A T
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oyolic subgroups N of Zp x Zp such thet the fixed point set
F(N) is non-empty. Since Zp x Zp oconteins only p+l non-triviel
oyclic subgroups and since the cyclic subgroup generated by
(S,1), which we denote by No, aots freely on X, NO& N,
Hence_ﬂ” has at most p elements. On the other hand, we have
UX (F(N)) « F; henoe N is non-cmpty. Let N, oo, NK, 1tk#p,
be the slements ofj(; By l.7, F(Ni) is a cohomology rj-sphere
mod p end ry is odd, sey ry=2ni*l, iz1,2,ee.,ke Lot Cy=
n(F(Ni)), im1l,2,.005k; then Cy is connccted since F(NY) is.
Moreover, it is eesily seen that 01”03 =® if 1 £ j. Since
F .ut‘l,r‘ﬂ' (F(N)) = ;\3‘ Cyy we concluce tnet {Gi} 11_‘1 is
precisely the set of all couponents of F. Now the cyclic
group No eacts on F(Ni), freely of course, and C4 ls just the
orbit space of this cotion. Therefors, by 2.3, C4 is a
cohomology lense (2nj+l) - space mod pe Finally, by l.9,
we have

L

..E[(Zni*l) - (-1)] = (2nel) - (-1),
which reduces exactly to

.ini = D=kel,

(AN ]
In exactly tnoc ssny wty, one can olso prove

4.2, Theorem. Suppoce tnct Y is 2 zobomnlogy ieal pro-
ective n-gpace on which Zg 2otse Then chc fixed point set F

e 3

as at most 2 cowpoaents and gagh couponent of F is a cohomology
renl projective spacce If F has K components Ci,eesyCy, 1¢ké€2,
C4 is o cohomology roal protective nj-space, i1zl,2,eee,K,

o
[< 7]

n

ct

hen

Ny = n-kél,
'

“TIx

AT



PART 2

Section 5. Preliminaries of Part 2

A8 in section 1, the present section 1s a collection
of preliminary results to be used in the following sec-
tions.

5.1 Let G be a compact Lie group acting on a
compact Hausdorff space X, For each xeX, C'x =

{gcc | 8x = x} is a closed subgroup of G called the
isotropic subgroup at x and the set a(x) ={gxi ge G} eX
is called an orbit. The conjugate class [Gx] of @, in @
depends only on the orbit G(x); hence it is called an
orbit type. We say that the action has finite orbit
structure 1¢ the set {[Gx] | xex} is finite. In
case that G 1s abelian (such as the circle group
sl), it is the same to say that there are only a finite
number of distinct isotropic subgroups, [1; p. 104].

5.2 Let X be a locally compact space and L a
principal ideal domain. The cohomology dimension of X
over L, denoted by dim X is defined by

dim X € n if Hg"'l (U;L) = 0 for all open subset UGCX,

where H, (U;L) = L> HS (U;L) is the Alexander - Wa'lace -
Spanier cohomology of U with coefficlents in L and wi.h
compact support. X is sal’ to have a finite cohomology
dimension over L if dim X¢: for some n. In symbols,
we write dim X < oo .
The function dim X is introduced by H. Cohen (7].
It is known to have the following properties:
(1) dim X € dim,S, where Z denotes the ring of
integers,
(11) dim X = Max (dim_ A, dim _X-A) for any closed
subset AcX.

30
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(111) dim (XxY) § dim X + dim Y, where Y 18 a
locally compact space and XxY is the product
space of X and Y,
(1v) If X is a compact Hausdorff space of finite
Lebesque covering dimension n, then dimzx = N,
Let (X, Y, Sl, 7) be a principal bundle in the sense
of [18)], where the fibre sl 1s the circle group, the base
space Y is compact Hausdorff and dim Y <es ., By the
properties (i) - (iv) listed above, it 1s easily seen
that dim X < oo ,
5.3. Proposition. Let G be a compact Lie group
acting on a compact Hausdorff space X and X/G the orbit
space. Then

dim X/G € dim X.
A proof of 5.3 can be found in [1; p. 11l1].
5.4. Let sl act on a connected compact Hausdorff
space X. Consider the (2N+1) = sphere

S2!-1-1 - {(zo, 209 eves zn)l L?.°|zi'3-', 2, = complex

number for all i = 0, 1, ..., ll} + The map
S1 x S21‘-0-1 — s2l+1
(27, (2,.002,)) — (702, ., «TOlz),
0 © ¢1, defines a free action of S! on
82N+1 for which the orbit space is the complex projective
N-space ceX, Let P: 82”"'1 — CP' denote the canonical
projection. Now let Sl act on the product space XxgoN+!
diagonally by g(x,u) = (gx, gu), ge S', xeX and ue xa"*l.
Denote the resulting orbit space by X,+ and the canonical
projection of )txsgm'1 into X,y by q, There are two canon=
lcal maps m;: Xg, —> X/S' and 7,: Xgs — cPN such that
the followlng dlagram ‘

LYY
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PrlTk‘

X/s" — ¥ ¢— Xxs2¥ goN+1 —--) cpN

is commutative, where Pr1 and Pr2 are the projections of
the product space Xx82'+1 onto 1ts first and second factor
spaces X and S2N+1 respectively, The map To is a fibe
ring with fibre X for which the Leray sheaf is constant
since CP' 1s simply connected. There is then a spectral
sequence (E,.) whose E, - term is given by

Ey’® = #®(cP™; Hh(xi1))
and whose E,, - term 1s assoclated with H¥(Xq,;L). The
map is in general not a ribring. In fact, for each
y = v(x)e X/S', we have 1r (y) 82""1/8 . Finally we
remark that the cohomology ring of CPN is given by

(1) me(cP;p) = ¥ 1/xM1), geg x = 2,

where L(=]) 18 the polynomial ring with coefficients in L
and (x N+‘) is the 1deal generated by x“"'l.

For detalls of the above, one may consult [1; Chap. 1iv,
§ 1, 2 and 3] where the general case of compact Lie
groups is treated and with [10] and [8] where the specific
case of S' is discussed.

In later applications, we shall always assume that
X has finite cohomology dimension over [ and that N
1s chosen so that 2N+1 > dim X. This convention will
be adopted from now on without further explanation (cf.

1; p. 52),

\s



33

Suppose S' acts on X freely, Then wzl (y) =
82N+1 for all y ¢X/S'. Since Hk(S2N+1
1 € k < 2N+1, by the Vietoris mapping theorem we have

;L) = O for all

”'1*’ Hk(x/S'; L) — Hk(xs.;L) is an isomorphism for
all 0 €k < 2N+1, We have therefore
5.5 Proposition. If S' acts freely on a connected

compact Hausdorff space X such that dimLx <oe , then

for a sufficiently large N there exists a spectral sequence

g Er) whose E, - term is given by

Ey’® = H%(cP™; wh(x;1))

and whose E_ - term is assoclated with H (X/S'; L) up

to dim X.
More precisely, the last statement of 5.5 means that
N
there exists a suitable filtration on L ;[ ri(x/s'; L)
s,t
whose associated graded group is given by Z s+t € 2'3, .
We notice furthermore that for S ¢2N+1, the canonical edge
homomorphisms
QPs: Ep’® — H® (X/8'; L) and

; gt H® (X's'; L) — E3*°

of (Er) are given by 71*"2* and 1“ respectively,
In the next section, we shall apply 5.5 to the
case where X 1s a cohomology k-sphere over L. There

is then the Gysin exact sequence

\,
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Ya k¥
oo = E3?0 > H3(X/S';L) —p EpK0K TRy gB¥I0_
S< 2N41,

We remark that Ta is the multiplication by an element
a e gt (CPN;L) [2; Expose IX, théoréme 8],

5,6 Let S' act on X with the action being not
necessarily free and let F be the fixed point set.

Considering F as a space acted on by S', we can form Fs'

and consider the maps v,: F,, —) F/S' = F and Tyt
Fg1r — CP". It 1s easily seen that the space Fs' is

Just the product space FxCPN, since 7
N

1 and T, are Just

the projections of FxCP" onto its factor spaces, the
spectral sequence of 7,: FxCP' - CPN is of no interesat,
On the other hand, the inclusion i: P — X induces an
inclusion 1s" F‘. —— xs; which in turn induces a
H' (Xgo3L) —d H' (Fg,3L). It 1s

homomorphism 1*
known [1; p, 55] that if dim X <= , then 1. ,:

g’
Hk(xs,;L) L H‘k(Fs,;L) is an isomorphism for all

dim X < K € 2N, provided that L is a field of charactere
istic zero.

5.7 Proposition. Let X be a cohomology n-sphere

over L, where L 1s either Z or a field of characteristic

zero. Let S' act on X. Assume moreover that dim X<eo

and that the orbit structure is finite. Then the fixed

point set F(S';X) 1s a cohomology r-sphere over L for some

-1¢ r € n and n-r is even.

This result can be found in [1; p. 63].

s
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5.8 Let X be a cohomology n-sphere over L, where
L is a field of characteristic zero and let S'xS' act on
X. Assume moreover that dim X <e and that the orbit
structure is finite. By 5.7, the fixed point set
F(S'xS';X) 1s a cohomology r-sphere over L. Moreover,
let ¥ = {HIHeS'xS'}] be the set of all closed sub-
groups of S'xS' which are isomorphic to S'. Then each
F(H,X), He T 1is a cohomology n(H) - sphere over L.
We have the following theorem due to A, Borel [1; p. 175],

5.9. Proposition. Let the hypothesis and the notg-

\,
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Section 6, Cohomology Complex Projective Spaces

Throughout this section, X is a compact Hausdorff
space on which the circle group S' acts freely. As usual,
X/S' denotes the orbit space and 7v: X —p X/S' denotes
the canonical projection. We also agree that for the
rest of this paper, H‘(x) denotes the integral Alexandere
Wallace-Spanier Cohomology of X. Whenever groups (rings
or fields) other than Z are used as coefficient groups,
they will be written out explicitly.

6.1 Definition. A compact Hausdorff space Y is

salid to be a cohomology complex projective n-space if

its integral cohomolngy ring H*(Y) 18 given by

H'(y) = ZX1/ (™), degx = 2,
where Z[x] 18 the polynomial ring with coefficients in 2
and (xn+1) is the ideal generated by xn+1.

6.2 Proposition. If X 1s an integral cohomology

(2n+1) - sphere such that dim,X<. , then X/s' is a

cohomology complex projective n-space,

Proof, Consider the spectral sequence (E-) of 5.5,

where we have

ey’" = w%(cPV; wt(x)).
Since X is an integral cohomology (2n+l1) - sphere, by
5.5 we have the QGysin sequence

8~-2n=2, 2n+1 Ya 8,0 . 8e2ne=1,2n+1

oo — E, — B3’ °——3 H°(X/S') —> Ej

—!3*.-..,

\s
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where ¥ a 1s the multiplication by a generator a: H2n+2(CP').

From this exact sequence, 1t 18 immediate that
8 ]
by E’° — H(X/s')

1s an isomorphism for all 0€S $2n. For 2n < S < 2N+1,

we obtain
HY(X/8') = ©
by the fact that Y a i1s an isomorphism, For 2N+l § S,
we obtain
8 '
H(X/S') = 0
by the agreement that 2N+1 >dim,X and 5.3. Finally,

-1
as ¢s = 1r1*

obtain the desired cohomology structure of H*(X/S') 1in

(o} 1r2* commutes with cup~product, we

view of (1) of 5.4,
The next theorem 1s an analogue of 2.5.

6.3. Theorem. Suppose that S' acts freely on a

compact Hausdorff space X such that X/S' is a cohomology

complex projective n-space. Assume moreover that dimzx/S'

<., and w¥*: H2(X/S') —— H2(x) is trivial. Then X is

a1, integral cohomology-(2n+l) sphere and dim,X< ee .

Proof. By a theorem of Gleason, [11], the system
(x, x/s', s', v) forms a principal bundle; hence we have
dim,X <oo by 5.%. We can therefore consider the spectral

sequence (E,) of 5.5, where we have

3% = w(cr¥; wt(x))

\s
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for a sufficiently large N.
By the universal coefficient theorem, it is easily
seen that for any coefficient group L,

L, 1f S=2k, 0%k <N;
us(ce¥, 1) = { ’ ’ ’

0, otherwise,

(1) E; »* _ 0 for all odd s.

We recall that E ,, 18 the graded ring associated
with a suitable filtration of H*(X/S') and we suppose
that this filtration is given by a decreasing sequence
{H*(X/S')B}:_o of subgroups H""()(/S')s of H*(X/S');
1.e. H*(X/S' )gq1 S HH(X/S')g for all s, HY(X/S*), =
H*(X/S') and H¥(X/S') = U, H*(X/S'),. Then we have

I A ¢ Z LW/ a0 77 (3 T

where Hk(x/S' Hk(X/S')n H*(X/S'),. Moreover, in

the sequence
230 By wia/sr) L4y 008
where ¢ s and ‘Pa are the edge homomorphisms, we have
(3)  Im P, = H(X/S'),,
Ker ¢/ = H3(x/s! )1.
We now claim that

(4) bg: Ep’° — H(X/S')

is an isomorphism for all S = 2Kk, 0 € k € n. Clearly

\s
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¢ Eg’o —> H°(X/s') is an isomorphism; hence (4)
is trivial if n=0. Consider the exact sequence of lower

terms (cf. (3) of 2.,5)

020 B Wiy £y P4 20 B 2oy,

Since Hl(x/S') = 0, this reduces to

0 —> Eg’l -°-‘-:-)B§’° _“_;uz(x/sx ).
By (3), we have Im ¢2 = H2(X/S')2 and Ker ¥ =
HE(X/S');. But HO(X/S'),/HE(X/S'), = El = O because
Ep’l= 0 by (1). Hence In &, = Ker ¥,. In other words,
the following sequence

(5)
d a ¢
0 ) E2,1 __',’ B%*o _)Hz(x/sl) it Eg’a
is exact. For n ) O, we have HZ(X/S‘) a 2 by 6,1. By
5.5, the homomorphism ¥ o 18 Just w#; Hz(x/S') e 4
32()() which is trivial by assumption, Hence (5) reduces to

o-—)zg’l-—-)z!-‘-)z—-)o

and this implies that ¢2: Eg’o — HZ(X/S') is an

1somorphism., Since

\s



4o

(6)

s od
n§'° =Zs-oEg,o = ZB_O}{‘(CPN3H°(X)) =

Z;oﬂs(cpn) = H*(cPY)

and @ = wl*'l om,* (see 5.5) commutes with cup-
product, (4) follows from the ring structures of
He(cPN) and H¥(X/s').

Relation (4) implies that none of the terms
8,0

E.

element for r 2 2. In particular, we have

» 8=2k, 0 € k< n have any non-zero cobounding

(1) ag: EBL S0

is trivial for 11 S=2K, 1 & K € n, Moreover, we have
E%® = (/3" )/ (%/5'), by (2) and Im ® _ = HO(x/8'),
by (3). Hence (4) im))ies that H"(X/S')s = H’(x/s')l-n"(x/s)

for S=2K, 1 € X € n. In other words, Ec:;’ = 0 for

all S = 2K, 1€ X€ n, Clearly we have also that

O,
oo

E°’® 2 0 for all odd s simply because H’(X/S') =0

when 8 is odd, Thus we have

(8) E&’s =0 for all 1€ 8 £ 2n,

Now we prove by induction that

\s
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(9) H%(X) = 0 for all 0 s < 2n+l.

If n=0, (9) is trivially true. So we assume that n ) 0O,
By (4), & o 18 an isomorphism; hence Eg’l = 0 from the

exactness of (5); 1.e.

1

H'(X) = E3’" = 0.

Suppose that it has been proved that Hi(x) = 0 for
all 1€ 1 <8, s £ 2n, Consider the differentials

dr: Eg,s N Eg,s-r-n‘

Clearly dr = 01if r > 8+l. If 1 ¢ r < s+l, we have
1< s-r+l < s; hence E;""”'l = B (cPN; P~ (x)) = 0

-

by the induction hypothesis. Therefore d : Ep’ >

Er;’v 8=T+l 44 trivial since E:,a-r+1 = O. The only case

left for consideration 1s d,): E0}Y —p ESTI/C, 1t

0,8 %.1,0
s+l' Eqp1 P Egy’
because E:'” ‘0 o 0; hence E""l’° = 0, If s is u.dd,

s+1
then s+l ¢ 2n and 4,,,: EO1% —y E:I}W 1s trivial

841°
according to (7). It follows that d : E;’B —> E:'r"'l

8 1f even, d is trivial simply

18 trivial for all r 2 2, Hence Eg,s = E‘::s

(8) we have

and by

H3(X) = Eg’s = 0.
Next we shall prove that
(10) B (x) = 2,

s
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1%
If n=0, then (5) reduces to 0 — Eg’ ——-)E2’° — 0,

Hence

2n+1( g.o - Z.

H X) = H'(X) T E

Suppose then that n 2> 0. Consider the differentials

0,2n+l r,2n+2-r
d: E’ — E.’ , r22,
It is easily seen from (9), which has just been proved,
that these differentials are all trivial except possibly

when r = 2n+2, Hence we have

0,2n+1 0,2n+1

0s2n+l and 322041 o 29

0, 2n+1
Es

2n+2 =0

= E

where the last equation holds because Han+1(x/8') = 0,

Similarly, we also have

2n+2,0 2n+2,0 2n+2,0 2n+2,0
Eo" ' = Eppyo and Eont3 = Ee = 0.

But by definition

d2n+2
0,2n+1 0, 2n+1 2n+2,0
Eon+3 = Ker(Ey 5 » Eonyo’ ) and

don42
2n+2,0 2n+2,0 0, 2n+l 2n+2,0
Eons3’ = Eons2’ // Im(Egny2 P Eonio’ )

. n0r2n+l 2n+2,
It follows that d2n+2' Eone2 —_)E2n+2 is an

isomorphism and hence

H2n+1 0 2n+1'= Eo,2n+1 ~ E2n+2,o - E2n+2,0 = 2,

(X) = Ep, on+2 = Eons2 2

Up to this stage, the argument i3 quite the same as
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that used in 2.5. To determine the higher dimensional
groups, we have of course no speclal cohomology theory
available here. Instead, we propose to prove by induction
that

1) w2"K(x) = 0 for all 2 € K & dim X-2n.

Since H*(CPN) 1s torsion free, we can write E, =
u*(cPN;u*(x)) = H*(cP") en"(X). We have just shown that
o, - d2n+2: Eg,2n+1 N E§n+2 »0
(for all n ¢ 0). This isomorphism can be descrited as

1s an isomorphism

follows: Let a denote the generator of H2(CPN) and
1 denote the generator of H°(CPN) as well as that of

HO(X). Consider the element a™'l @ 1 € EgnKZ,o' regarded

as in ES:IS »0,  Then there is an element b € 32“+1(x)

such that the element 1 @ beE2’2n+1, considered as in

0,2n+1 +1

Espio » has the property that d2n+2(1 eb) = a"t e 1,

and 6_ 1s completely determined by 6_(1 © b) = a™? ¢ 1,
%
Let Z(E3*%) = Ker(ED’ N ST L z"'1),

8, t

Z(Es t‘-——» E>’Y be the canonical projection and J

r+1

Z(E:' )-——+~E *Y  the inclusion. We agree that if we write

. o8,t
Wn' s E

—) Er+1’ then 1t 1is tacitly assumed that
z(E5’°) = 3" Similarly, if we write j20%: ED:Y —

o » then it is tacltly assumed that Z(E:-r,t+r-1) -

\s
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E:-r,t+r-1 and E;i: has been identified with Z(E:’t).
We observe that from (2) and 6.1, we have always
E,s,.’t = O whenever s+t > 2n. All these will be used
from now on without further explanation.

From (1), (9), and (10), it 1is easily verified

that we have the following diagram when n > 0.
0,2n+2

J2
0, 2n+2 0,2n+2 0, 2n+2 0,2n+2 0, 2n+2
E29 6___._— %’ - E26+3 = Eaf’lw = E“' = 0

da
2,2n+1 J2,2n+1

2,2n41 P2 2,2n+l 2n+l Y2n+2 2
Ey’ — 5’ - E§;+2 43 -

1 dons2

on+4,0
ESI'H-“ »0 - E2n+2 ’

In this diagram, Kerda = Im Jg’2"+2 = 0, Define 05

2,2n+1 2n+,0 2,2n+l
E2’ —) E, ’ by 62 = d2n+2 o pa’ « Then

because Kerd = Im J2’2n+1 = 0, we have Kere, =
2n+2 2

2n+2
In other words, the sequence

d2 02
2,2n+1 2n+4,0
__.’32' — 32 ’
2’1 “,o
18 exact. When n = 0, we define 02: E2 — E, simply
as 92 = da. Then it 18 directly verified that the above

sequence is also exact for n = 0, Now let us calculate

,20+1 _p2,2n41
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2,0 _

0,(a 8 b). We first observe that E 0

ons2r For
n=0, this is trivial; for n » 0, this follows from (4).

2,0

Hence we may consider the element a @ 1 € E2 as

2,0
in E26+2. Clearly we have d2n+2(a @ 1) = 0. Hence

2,2n+1

92(a 0b) = donio © Ko ( (a@1)(1 b))
=dy o ((a91)pd®™(1 g b))
=dy o (a @ 1)(1 @ b) )
= (a ®1)a, (1 0D}

+(dy, 0 (2 91)) (1 @D)
- (a 01)(a™ 01)
- an+2 01
if n > 0 and
8,(a 8b) = d,(a 8b) =d,( (as1l)(16Db))

(a 1) dy(1 @ b) + (dy(a 6 1) )(1 @D)

(a @1)(a 01)

-8.2‘1
if n=0. In both cases, this means that we have the

following commutative diagram
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dz 62
o , E2,2n+2 ’ E§’2"+1 E§n+4,o

'(aﬂlT ‘l‘rael

6o
E2,2n+1 , Egn+2,0’
where fa: HK(CPN) —)H‘K+2(CPN) is the multiplication
by a, Since Y; is an isomorphism, it follows that
02 is an 1somorphism and hence, by the exactness of

the upper row, we have

2n+2

}{ (){) - I’ Eé;.:!fr+4? = ()'

Suppose it has been proved that H2"+1(x) = 0, for
all 2$ 1<K, XK€ dim X-2n. We consider two cases:
Case 1. K is even; say K = 2m, There are again three

cases:

(A) 1< m <n+l. Then we have the following diagram

: 0 Iredm
Jlm Lo © 3T P YY L°Y
E;_"""""- E;_';:’"'“ e 'l'::,'"ﬁ P’i’.‘&;..q a Eine2manE o s QO
‘L&N\
2m, A0 e 2wy dnet
Mam Janea

3 A Zm,anel Tmyénel
:-vm‘ EAn e ’E:{l:i“ < B3I — EL™ « g% e QO

Aned
ld'l ey

An+2mel,0 aneamé

\,



b7

In this diagram, define §, Eg,2n+2m —> E; ’2“+1by 'y -dzm and
. pem,2n+l n+2m+2,0
em. Ee ’ —-—* E2 ’ by 9 2n+2 )1—‘“’ 2n+1
s2n+l

Then Ker § = Im Jo » 2n+2m = 0 and Kere = Ker Pon

en+l_
= Im § because Ker d2n 2" Im J2n1 0, Moreover,

we have
Op(a™ © B) = dop,p 0 pam@™( (a™ 9 1)(1 0 1) )
~dy o ( (2" 01) p3* 21 e b))
= dy, ol (2" 0 1)(1 @ b))

(a" 0 1)a, (1 @b) +m(a, (2 @) )(10b)

2n+

(a™ @ 1)(a"* 0 1)

o aﬂ’“l o 1.

It follows that we have the following commutative diagram

l‘:2m,2r|+1 em 2n+2m+2 0

IT T‘( o1

€,
E2’ 2n+l ’ E:gn+2 »0

0 i Eg s 20n42m

where the upper row 1s exact. Hence em must be an

1somorphism and therefore we have

H2n+K ( s 2N+2Mm - O.

X)-Ez

LYY
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(B) n+l ¢ my Then we have the following diagram

.0 nedm

Jam
oy2nedm Tmed Biem 3 nelrm Tt dm
= E m € E?‘“ " E ?w‘&’l. E:..ow\ hd .'. L o)

l -
L 1 dw, 800
) J,

Aned ~

A vl Low, & net Amdn® :
E:m, « E;::'g ¢ Eln,&n« - E ndn Am,Imé a Eﬁn.‘u\ol s O

ined Wm Amer
ld'l nel

Elnbbhot,‘ Et.‘ sdme 3,0
L Ane 2

o, AN edwm

%

In this diagram, define A: Eg’ 2n+2m ——) Egm,2n+1

2m, 2n+l . 2m, 2n+1

2n+2m+2,0 -
E; 'Y by ey = dy 5. Just as in (A), we have the

following diagram

0 i Eg,a‘n+2m A| I‘:gm,2n+1 Ow Egn+2m+2,0

v," 81 ’[ Y," 01

Eg,2n+1 S ’ E§n+2,o

where the upper row is exact, Hence we conclude again

that



0, 2n+2m

H2n+K(x) - E9

(C) n+l = m,

. O, ¥ndy
aAney
EOL\OM‘A .‘::..:: . E‘;'::.:“ E:::-;o‘l. = :,”130\’ Eq.:nv-'l.
ldinba,
Lned, Aned ne "
EY Tl E b
l‘lno[
H$net,0 Hnew,0
E. E ined
In this diagram, define $ : Eg,4n+2 —) E§“+2’2n+1 by
. pOrin+2 2n+2, 2n+1 . n+2, 2n+1
dff“:f' Bong2 — :2"322 and :nﬁ : B —
n+.0 . n+2, 2n+l n+4,0
Ey by dopiot Eppyn’ > E2n+2'u‘ Then we
0,4n+2
have Im § < Ker 64y 8nd Ker £ = Im 52n+2 = 0. This

300

Then we have the following diagram

time, we have the following commutative diagram

e
n+l Ynsdt,0

$
0 — Eg,4n+2 i E§n+2,2n+1 ’ E2
Ya“+~ o1 Iran"'l °1
e
0, 2n+1 2n+2,0
Ey’ —S——p B0

where in the upper row,

$ isa monomorphism and

49
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Im $ ¢ Ker en +1° But the commutativity implies that

en+1 is an isomorphism; hence again we have H2n+x( X) =

Eg,4n+2_ 0.

Case 2, K 1s odd; say K = 2m+l. Then we have

the following diagram

Elm,lhtl . E"""""
~ Lned

2ned
2ne amed,0 Anelmed o
A ner AManecdme) 2nea
ned me*2, SreAm R *dmae me odn & med,0
E:, Amd °. EA.\o‘;. e -——’E::o‘; L..‘ E::.:Jn.o:'. ‘_——’r;n..‘m:.' L =0
¢tno arm + 3
. (AROM @ ~e reme n - .'ln wimel
EX™™ - EJNTT - BRI s EMIRT BN el Yo,
JAnedne
AnddAme)
- 0, 2n+2m+1
We have Ker d2n +ome2 Im Jan +2m+l = 0 and Im dan omee ™
2n+2m+2,0 n+2m+2,0
Ker popomes = Egn +2oms2 © Hence d, +2ms2 18 an
isomorphism. Define w : Eg“+2m+2’ ° — Eg,2n+2m+1 by
-1 2n+2m+2,0 . pem,2n+l
W =donome2 © Popgo and 6,: E;" —>
2n+2m+2,0 _
E2 by em = d2n 20 Then we have Im em -

.
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2n+2m+2,0
Im d2n+2 = Ker Ponio = Ker W, Clearly W is

an epimorphism. Hence
e
w
Egm,2n+1 m, E§n+2m+2,o ' Eg.2n+2m+1 30

is exact. Moreover, it is easily verified that the
following diagram

g2m, 2n+1 ®m . _2n+2m+2,0 o E2.2n+2m+1 > 0

2 — B

ya"‘01T Txa’"01

Ez E

is commutative. Hence em is an isomorphism and we

Finally we have
" (%) = 0  for all K > dim X-2n

by the definition of dim,X. This completes the proof
of 6.3.

\e
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Section 7. Lifting of an action in a principal bundle
(X,Y,8'r)

Given a connected compact Hausdorff space Y and a
non-zero element & & H'(Y;Zp), we have described in
Section 3 how a cohomology covering space X with respect
to 4 can be constructed and also how a prescribed
action of 2, on Y can be lifted to an action of 7
on X in such a way that it commutes with the deck
transformation on X. Tn this section we shall treat

the corresponding problem when Z_ 1s replaced by S',

This can be formulated as rollowz. Given a compact
Hausdorff space Y and an element a € H2(Y), does

there exist a principal bundle (X,Y,S',r) such that

w*: Ha(Y) — Ha(x) maps a, into zero? Moreover, if

a prescribed action of S' is given on Y, can this
action be 1ifted to an action of S' on X in such a way
that each g ¢ S' gives a bundle automorphiasm of X? The

next proposition answers the first part of the question,

T.1. Proposition. Let Y be a compact Hausdorff

space and a, an element of H2(Y). Then there exists

2 principal bundle (X,Y,S',7) with compact Hausdorff

total spac: X such that T : Ho(Y) —p H2(X) maps a

0
into zero.

e
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Proof. We can represent Y as the inverse limit of an
inverse system {Ym. 4’:'} of triangulable spaces [9;
p.284], 1.e. ¥ = Aim {Ys ¢:'}, where each Y 1isa
finite simplicial complex. Let qu’ Y —>Y be

the projection. Then we have a system ¢m’: H (Y,)
—_— HE(Y) of homomorphisms which defines a homomorphism
¢*: im {H (Ym), ¢m' j ——+H2(Y) from the direct
1imit of the direct system {Hz(ym), ¢ " } into nz(t)

By the continuity theorem, we know ¢ is an isomorphism,
Hence there exists an index m and an element a_ € H2(Yn)
such that ‘Pm*(am) = a_. Consider the bundle

(S2N+1, CPN,S', P) (cf. 5.4), where N is chosen so that
2N+1 > dim Ym (dim Y, means the dimension of the
simplicial complex Ym). From the homotopy sequence

of this bundle, (13; p, 152], it is easily secn that

O; iIf0<n«<?2
wn(CPN) = Z; 1f n=2
0; if n < 2 < 2N+l R
where vn(CPN) denotes the n-th homotopy group of CPN.
In particular, cpN 1s n-simple and Hn+1(Ym.vn(CPN) ) =0
for all 2 < n < dim Yp, [13; p. 132]). Hence acoording
to the obstruction theory, [13; p. 192], there exists a

\e
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map g: Y, —> CPN such that g*(a) =a, where a
denotes the generator of Ha(CPN). let f1 Y ——)p CPN

be defined as £ = g o ¢rf Then we have f*(a) =a,
Let (X,Y,S',m) be the principal bundle over Y induced
by f; that is, X = {(y,u)l ye¥Y, u e 2N+, £(y) = p(u)}
c!xS2N+1 and 7: X —> Y 18 given by w(y,u) = y. Define
ng X __"82N+1 by h(y,u) = u. Then we have the

following commutative diagram

X h ! 2N+l
|
Y-—r—)

which in turn gives the following commutative dliagram for

n

p
N

Q

P

cohomology groups

L
H2(X) (_i:_.ﬂ2(82ﬂ+1) -

1 T

12 (Y) 4—— H2(cPN)

0

Therefore

v*(ao) = 7% 0 f#(a) = h* o p*(a) = h*(0) = 0,
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7.2 Let (X,Y,S',7) be a principal bundle where the
base space Y is compact Hausdorff, We may regard the
structure group S* as a transformation group acting on
X freely with Y as the orblt space and v+ X —> Y as
v..w ~anonical projection., Denote this action by 8,

l.e. B: S8S'XX —=> X 18 a map satisfying

B(g,:P(8y,x) ) = B(8,8,,%) for all g, 8, € S',x ¢ X,

B(e,x) = X for all x ¢ X, e = identity of G.
Suppose we have an action @: S'xY ——>Y of S' on Y.
Then by a bundle 1ifting of @, we mean an action a:

S'xX ~=3 X of S' on X such that

(1) = o a(g,x) = (g,r(x)) for all g € S', x e X,

(11) a(gll 6(82”‘) ) = 3(823 a(gltx) )e

In other words, a makes 7 an equivariant map and a
commutes with the action B of the structure group. We
shall now study the question of the existence of a
bundle 1ifting for a given action a of S' on

the base space Y. This question has been studied in
{19] under a more general situation by T,E. Stewart.
The following lemma is a slight modification of his

result and 1ts proof is entirely the same as that

\s
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used in {19). Hence we shall only sketch its main idea,

7.3, Lemma. Let (X,Y,8',7), B and & be the

same as in 7.2, Then there exists a neighborho-.d V of

the identity e ¢ S' and 8 map a's VxX — X satisfying

(1) (1) o'(8y.a'(gy X) ) = a'(8185,%) for all
81) 82y BB €V, X G X,
(11) a'(e,x) = x for all x e X,
(111) a'(8,.B(8,sx) ) = B(se,a'(sl.X) for all
g€V, 8,€ S', x ¢ X,
(v) 7o a'(g),x) = E(gl,r(x) ) for all g, 6 V, x €X,

Proof. For convenience, denote &(g,y) by gey for
g€ S'and y ¢ Y. Choose a neighborhood U of e homeo-
morphic to the unit interval. The identity map Qg X—p X
18 clearly a bundle map and the restriction of G on
UxY is a homotopy of the induced map of Qge Since Y
is compact HausGorff, we can apply the first covering
homotopy theorem, [18; p. 50]. This gives a map a:

UxX —) X satisfying all conditions of (1) (with V
replaced by U) except possibly (i). Choose V homco-
morphic to the unit interval such that Vjcu and define
the error function (cf, 19) f: VXVXY —9 8' by the

equatic:

(2) alg,8,x) = B(T(&),8,m(x) ), algy,algyx) ) ).

s
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By the associative law of the multiplication in S?',

we have

(3) T(g),8, 53-y)'lf(sz.sB.y)?(sl.sas3ny)3(3182.53.y)'1 = e,

Let R be the group of real numbers and ¢; R —> S' be

the exponential map defined by o(t) = e2"t1

s t e Re The
map ¥ 1s a homotopy of the map ¢ o f,: VXY —Js'

where f : VxY —) R 18 the map defined by ro(g,y) - 0,
Hence we can apply the second covering homotopy theorem,

[18; p. 54]. This gives a map f: VxVxY —) R satisfying
f(e,g,y) = 0

and f is unique since R is the universal covering group
of S'. The uniqueness of f implies that f satisfies the

equation

(%) (8283 M=1(8)18,:85 V) +(8)18,85,¥)=1(8,8,,85,¥) = Oy

Let

1

(5) P(81)82983)(Y) = f(sl. 82182-183083.1’Y)v

By (4), we have

(6) P(Ggo‘;:&u)(Y)’P(81083’84)(Y)*P(Slpgaxgu)(Y)
-P(g,,8,:85) (v) = O,

s
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Let C(Y,R) be the space of all continuous real valued
functions on Y endowed with the compact open topology; or
equivalently, C(Y,R) has the usual norm topology since

Y is compact, Then P can be regarded §8 a continuous
functlion defined on some neighborhood of the diagonal

of S'xS'xS' taking values in C(Y,R) and satisfying (6),
Since C(Y,R) is a metrizable absolute retract, (13, p, 201,
we may assume that P is defined on all of S'xS'xS', i,e,
P: S'xS'xS' —p C(Y,R) is a map, Let A"(S*,C(Y,R) )

be the sheaf of germs of continuous Alexanler-Spanier
n-cochains with coefficients in C(Y,R), Then
A*(S',C(Y,R) ) = {A"(S'.C(Y,R)} is a soft resolution
{12]) of the constant sheaf C(Y,R) over S' (ef. 19).

Since Ha(S',C(Y,R) ) = 0, there exists a continuous
function Q: S'xS' —) C(Y,R) such that

(7) P(81082083) = Q(82083)'Q(BIOSB)"’Q(51782)

on a neighborhood of the dlagonal of S'xS'. Define Q':
S'x8' — C(Y,R) by

Q' (g, 85)(y) = J:.Q(ssl.ssg)(sw)ds,
where the integral is taken with respect to the normalized

Haar measure of S'. Then we have

(8) Q' (88,,88,)(8:¥) = Q' (&;,85)(¥)
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and (7) is still true when Q is repleced by Q'. Now
define

h(g,y) = Q' (e,g)(gey).

Since Y is compact, h is simultaneouaiy continuous in
both variables, (4; Chap. X, p. 24), By (8), (7) and (5),
it is easily verified that

(9) f£(8),850¥) = h(gos¥)+h(g,85°7)=n(g18,,Y).
Finally, define a': VxX +) X by
a'(g,x) = (e o h(g,x), a(g,x) ).

Then by (9) and (2), it is directly verified that a'
satisfies (1) - (iv) of (1).
T.4. Proposition. Let (X,Y,S',r) be a principal

bundle and G: S'xY —) Y an action of S' on Y. Assume
that Y 1s compact Hausdorff and H'(Y) = O. Then there
exists a bundle 1ifting a: S'xX —) X of q.

Proof. As before, we let B: 8S'xX —p X denote the
action of the structure group S' on X and ¢: R—) S' denote
the exponential map., We shall first def'ine an action of
Ron X. Let H(X,X) be the group of all homeomorphismsa
of X onto itself endowed with the compact open topology.
Since X is clearly compact Hausdorff, H (X,X) is a
topological group [18; p, 20] and an action of R on X 1is

\s
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equivalent to a continuous homomorphism of R into

B (X,X)e By 7.3, there exists a neighborhood V of
the identity e € S' and a map a';: VxX — X satisfying
(1) of 7.3 . We may assume that V is small enough

so that there exists a neighborhood W of oe R such
that W is mapped homeomorphirally onto V by ¢. Hence
a' may be considered as being defined on W, Moreover,
equations (1) and (11) of (1) of 7.3 imply that a' is
a local homomorphism of R into % (X,X). Since R is
aimply connected, a' can be extended to a continuous
homomorphism of R into ¥ (X,X), [6; p. 4¥9]). 1In
other words, we have a map a': RxX —) X satisfying

(1) (1) a‘(tl&a'(ta.xl) = a'(t1+t2,x) for all
1:1’?.2 € R, x e X,
(11) a'(o,x) = x for all x & X,
(141) w7 o at(t,x) = G(ep(t), v(x) ) for all t € R, x e X,
(1v) a(t, B(e(S),X) ) = B(e(S),a(t,X) ) for all
t, S &R, x € X.

For every y ¢ Y and x ¢ w'l(y). we have ¥ 0 a'(0,x) =
Yy= fFoa' (1,x), Hence there exists a unique element

g(y) ¢ S' such that

(2) a'(0,Xx) = B(g(y), a'(1,X) ), ¥y = w(x).

L)
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It is easily verified that y — g(y) defines a map
g: Y —) S' which satisfies

(3) g(Z(o(t),y) ) = g(y) forall teR,yel.

Let w'(Y) be the Bruschlinsky group [13; p. 48] of Y.
It is known [13; p. 59] that w?(Y) and H'(Y) are
isomorphic; hence v'(Y) = O by our hypothesis. There-
fore g 1s homotopic to zero. Since Y is compact, by
the second covering homotopy theorem (cf. 7.3)

there exists a map h: Y —) R such that g = ¢ o h,
Define a": RxX — X by

() a"(t,x) = B(o(th(w(x) ) ), a'(t,x) ).

Then it 1is easily verified that a" satisfies (11),
(111) and (iv) of (1), To verify (i) of (1),

we let y = w(x), and obtain

a"(ty,a"(t5,x) ) = a’'(t,,B(e(tsh(y) ), a'(ty x) ) )
Ble(t,h(B(e(t,)s7) ) ), a'(t),

Blaktoh(y) )y 2*(t5x) ) ) )
Blo(t h(y) ), Ble(tzh(y), a'(t),a'(t,,x))))
Blo(t)+t5)h(y)),a’ (t)+t,,x) )
a"(ty+t,,X),

Moreover, by (2), we have

s
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a"(o,x) = B(o(oh(y) ), a'(o,x) = a*(0,x) and
a"(1,x) = B(o(h(y)), a'(1,x) ) = B(g(y),a’(1,x) )

= a'(o,x) = a"(o0,x).

It follows that a: S'xX —> X given by

a(e(t),x) = a"(t,x)
is a well-defined action of S' on X which is a bundle
1lifting of &.

\s



Section 8. Actions of S' on cohomology complex projective

spaces,

We now turn to the action of the circle group on
a cohomology complex projective space Y. As in
Section 4, our final goal will be the determination
of the cohomology structure of the fixed point set. The
result we shall obtain here is however less general
than that given in Section 4, in the aense that a
stronger hypothesis will be imposed. In fact, we
shall assume that Y is of finite cohomology dimension
and that the action has finite orbit structure. whether
these unwelcome conditions can be removed is unknown
to the author,

We first prove a proposition that will be used in
the proof of the main theorem and which is also
interesting by itself:

8.1. Proposition. Let S' act on a cohomology

complex projective n-space Y such that dim,Y< e .

Then the fixed point set F 1s non-empty and F has at

most n+l components.
Proof. Consider the spectral sequence (E,) of

the fibring m,: Yg, —3 CPN of 5.4 with the field of
rationals Q as coefficient group and where N 18 so chosen

that 2N+1 > dimzy. We have

0t = w(erVint(v;0) )
63
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and the E,, -term 18 associated with H*(!s,;Q). By

the universal coefficient theorem, it is clear that

H’(Y;Q) = Qlx ]/ (xn+l)’ deg x = 2,

where Q(x| 1s the polynomial ring with coefficients in
Q and (x H'1) is the ideal generated by xn+1. It follows
that we have Eg’t = 0 when either 8 or t is odd. If

s and t are both even, we have d: E:’t —) E:+r,t+1-r
is trivial for all r » 2 since at least one of s+r or
t+l-r 18 odd for any r # 2. It follows that the

spectral sequence (Fr) is trivial and we have

atm #(¥g,:Q) = ZuF aim g% - LK aim 57508

This relation determines H*(YS, ;Q) immediately as
0 if K is odd,
(1) m+l if K=2m, O<¢mé€n,
dim HK(YS.;Q) a/n+l If KX =2m, n€& me€ N,

n-(m=N)+1 1if K = 2m,
N&mg Nn,

0O iIf K=2m, N+n ¢ m,
Suppose that F = ¢. Consider the map 7,:
s —3Y/S' of 5.4, For each Z = w(y) € Y/S', where
T: Y —) Y/S' is the canonical projection, we have
wl'l(z) = 82N+1/S'y, where S'y is the isotropic subgroup
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at y ¢ Y. Since F = b, S'y is a finite group and it
is known that Hk(82N+1/S'yzQ) = 0 for all 1 € K £ 2N,
(ef, 1; p. 54). Hence by the Vietoris mapping theorem,
'“'1*’ Hk(Y/S‘;Q) — Hk(YS.;Q) is an isomorphism for all
0€ K< 2N. In particular, take K even such that
dim Y< K< 2N, Then by (1) we have H<(¥/5';Q) £ o.
On the other hand, by 5.2 and 5,3, we have dimQY/S"
dimzY/S' < dim,Y. This gives a contradiction.

Stnee dim ¥ <. , by 5.6 we have 1"t H(Yg,:Q)
—’Hk(FS.; Q) = sz"-ox HK'S(CP") ) HS(F,Q) is an
isomorphism for all dim .Y < K € 2N. Take K = 2m such

that dimQY < K £ 2N. T:en by (1) we obtain dim H°(F;Q)s
n+l, which proves our assertion.

Now we present the main theorem of Part 2 of this
paper,

8.2, Theorem. Let S' act on a cohomology complex

projective n-space Y. Suppose that dimzY< os &and that
the orbit structure _1_3_ finite. Then the fixed point

set F 18 non-empty and F has at most n+l components

Cl.. o v cK, k € n+l, where each (:1 is a cohomology

complex projective n, -space for some ni, 1=1,2,...,

K, and
K
(1) -
81=1 ni = n=K+1,

Proof. We have already proved in 8,1 that F £ ¢
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and that F has at most n+l components, Let Cl""‘
~CK(K € n+l) be the components on F. It remains to
show that each C1 is a cohomology complex projective
ny-space for some n, and equation (1) holds.

Let a_ ¢ HZ(Y) be a generator of H2(Y). By
7.1 and 6.1, there exists a principal bundle (X,Y,S),r)
with Y as base space such that 7 : H2(Y)~——+ 32(x)
is trivial. Let B: S'xX —~3 X denote the action of
the structure group S' on X, Then the action B is free,
Since X 1s obviously compact Hausdorff, by 6.3 we
know that X is an integral cohomology (2n+l)=-sphere.
Let @: S'xY —) Y denote the given action of S' on Y,
Since H'(Y) = 0, @ has a bundle 1ifting a according to
T.4, Since a commutes with B, the map ¥: (S'xS')xX

—) X given by
¥((g,+85), x) = a(g,,B(g,,X1), &,8, ¢ S', x @ X

defines an action of S'xS' on X. Clearly, Y has no
fixed point.

We claim that the action ¥ has finite orbit struc-
ture. Take anv x € X and let y = w(x). Suppose that
(g,+85) @ G c S'xS'. Then we have T o ¥( (gl,ga);x) -
T o a(gl,B(gz,x)) = E(gl,y) =y, Hence g, ¢ Gy, wnere
Gy ¢ S' 18 the isotropic subgroup at y under the action

¥, We consider two cases:

\,



67

Case 1. @ ¥ 8'. Then Gy is a finite cylic group,
say of order K. Let go be a generator of cy. We have
g = go" for some 0 € £< K. Since a(go,y) -y,
there exists a unique g,' & S' such that B(go',
a(go,x)) = Y From this we _ ¢ e 'X . e, Hence there
exists some 0 £ m, < K such that go' = g°m°. Now

x = a(g,,B(8,,x) ) = algd , Plgy,x) ) = B(saso"‘,x) -

B(g,8," “m°,x). Hence g, = go‘tmO so that every element

of G, is of the form (301 , go‘em°) for some 0 £ < K.

Clearly every element of this form is also in Gx' Thus

we have shown that Gx - Gy x Ny where 'y is a subgroup

of Gy As there are only a finite number of Gy of finite order
and of them they have only a finite number of subgroups,

the number of G, which are of the form nyNy with Gy of

finite order are finite.

Case 2, Gy = S', 1,e, y « F. For each g ¢ S', there
exists a unique g ¢ S' such that B(Z,a(g,x)) = X. It is
easily seen that the correspondence g —>» B is a continuous
homomorphism of S' into S', 1.e. an element of the dual
group S'" = Z of S'. Hence it must be of the form g —-’gxy,
where Ky is an integer depending only on y = w(X). The
set {(g.sxy)ls € S% 18 a subgroup H(Ky) of S'xS' and one
can see that Gx is actually equal to 1it. The correspondence
Yy — Ky defines a function K: F —9 Z. Using the
continuity of 7 1t 1s readily verified that K is

s
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continuous on F, It must then be constant on each
component CL of F. Hence we can define I-I1 - H(Ky),
Y Gci, i = 1,2’.00,K0 Each Gx Which 18 not Of the

furm given in case 1 must be one of the H Hence

1
again there 1is only a finite number of Gx of this kind,
Now each H1 is a circle group and the restriction
of ¥ on H1 x X defines an action of Hl on X which
obviously has finite orbit structure, Moreover, we have

dim, X< e by 6.3. Hence by 5,7, the fixed point set

Z
F'(Hi;x) = Fi € X 1s an integral cohomology mi-sphere

for some odd m,, say m, =2nj+l, It is easlily verified
that F, = v~ '(C,) and that d: S'xF, — F, defines

a free action of S' on Fi' By 5.2, we have dimZFis
dlmzx < « . Hence by 6.2, C1 is a cohomology complex
projective n, -space.

We remark that S'xS' may contain subgroups N isomor=-
phic to S' other than these Hi"' but none of them can
have a fixed point. In fact, 1. x ¢ F(N;X), we have
Gx = N 80 that N would be one of the Hi' We now apply
the theorem of Borel given in 5,9, Since we know cqux
Ce , Y has finite orbit structure and each F, 1s a
cohomology (2n1+])-sphere over Q. By the remark just made
and the fact that ¥ has no fixed point, this would give
(2n41) = (-1) = BX ((en41) - (1))

which reduces exactly to (1).
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